
FLAWFINDER(1) Flawfinder FLAWFINDER(1)

NAME
flawfinder − find potential security flaws ("hits") in source code

SYNOPSIS
flawfinder [−−help] [−−version] [−−allowlink] [−−inputs] [-minlevel=X] [-m X] [−−neverignore] [-n]
[−−columns] [−−context] [-c] [−−dataonly] [−−html] [−−immediate] [-i] [−−singleline] [−S] [−−omit-
time] [−−quiet] [−−loadhitlist=F] [−−savehitlist=F] [−−diffhitlist=F] [−−] [source code file or
source root directory]+

DESCRIPTION
Flawfinder searches through C/C++ source code looking for potential security flaws. To run flawfinder,
simply give flawfinder a list of directories or files. For each directory given, all files that have C/C++ file-
name extensions in that directory (and its subdirectories, recursively) will be examined. Thus, for most
projects, simply give flawfinder the name of the source code’s topmost directory (use ‘‘.’’ for the current
directory), and flawfinder will examine all of the project’s C/C++ source code.

Flawfinder will produce a list of ‘‘hits’’ (potential security flaws), sorted by risk; the riskiest hits are shown
first. The risk level is shown inside square brackets and varies from 0, very little risk, to 5, great risk. This
risk level depends not only on the function, but on the values of the parameters of the function. For exam-
ple, constant strings are often less risky than fully variable strings in many contexts, and in those contexts
the hit will have a lower risk level. Flawfinder knows about gettext (a common library for internationalized
programs) and will treat constant strings passed through gettext as though they were constant strings; this
reduces the number of false hits in internationalized programs. Flawfinder correctly ignores most text
inside comments and strings. Normally flawfinder shows all hits with a risk level of at least 1, but you can
use the −−minlevel option to show only hits with higher risk levels if you wish.

Not every hit is actually a security vulnerability, and not every security vulnerability is necessarily found.
Nevertheless, flawfinder can be an aid in finding and removing security vulnerabilities. A common way to
use flawfinder is to first apply flawfinder to a set of source code and examine the highest-risk items. Then,
use −−inputs to examine the input locations, and check to make sure that only legal and safe input values
are accepted from untrusted users.

Once you’ve audited a program, you can mark source code lines that are actually fine but cause spurious
warnings so that flawfinder will stop complaining about them. To mark a line, put a specially-formatted
comment either on the same line (after the source code) or all by itself in the previous line. The comment
must have one of the two following formats:

• // Flawfinder: ignore

• /* Flawfinder: ignore */

Note that, for compatibility’s sake, you can replace "Flawfinder:" with "ITS4:" or "RATS:" in these spe-
cially-formatted comments. Since it’s possible that such lines are wrong, you can use the ‘‘−−neverignore’’
option, which causes flawfinder to never ignore any line no matter what the comments say. Thus, responses
that would otherwise be ignored would be included (or, more confusingly, −−neverignore ignores the
ignores). This comment syntax is actually a more general syntax for special directives to flawfinder, but
currently only ignoring lines is supported.

Flawfinder uses an internal database called the ‘‘ruleset’’; the ruleset identifies functions that are common
causes of security flaws. The standard ruleset includes a large number of different potential problems,
including both general issues that can impact any C/C++ program, as well as a number of specific Unix-like
and Windows functions that are especially problematic. As noted above, every potential security flaw
found in a given source code file (matching an entry in the ruleset) is called a ‘‘hit,’’ and the set of hits
found during any particular run of the program is called the ‘‘hitlist.’’ Hitlists can be saved (using
−−savehitlist), reloaded back for redisplay (using −−loadhitlist), and you can show only the hits that are dif-
ferent from another run (using −−diffhitlist).

Any filename given on the command line will be examined (even if it doesn’t hav e a usual C/C++ filename
extension); thus you can force flawfinder to examine any specific files you desire. While searching directo-
ries recursively, flawfinder only opens regular files that have C/C++ filename extensions (e..g, .c, .h, .cc,

Flawfinder 17 May 2001 1

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

.cxx, and so on). The filename ‘‘−’’ means the standard input. To prevent security problems, special files
(such as device special files and named pipes) are always skipped, and by default symbolic links are
skipped,

Flawfinder intentionally works similarly to another program, ITS4, which is not fully open source software
(as defined in the Open Source Definition) nor free software (as defined by the Free Software Foundation).
The author of Flawfinder has never seen ITS4’s source code.

BRIEF TUTORIAL
Here’s a brief example of how flawfinder might be used. Imagine that you have the C/C++ source code for
some program named xyzzy (which you may or may not have written), and you’re searching for security
vulnerabilities (so you can fix them before customers encounter the vulnerabilities). For this tutorial, I’ll
assume that you’re using a Unix-like system, such as Linux, OpenBSD, or MacOS X.

If the source code is in a subdirectory named xyzzy, you would probably start by opening a text window
and using flawfinder’s default settings, to analyze the program and report a prioritized list of potential secu-
rity vulnerabilities (the ‘‘less’’ just makes sure the results stay on the screen):

flawfinder xyzzy | less

At this point, you will a large number of entries; each entry begins with a filename, a colon, a line number,
a risk level in brackets (where 5 is the most risky), a category, the name of the function, and a description of
why flawfinder thinks the line is a vulnerability. If you don’t understand the error message, please see doc-
uments such as the Writing Secure Pro grams for Linux and Unix HOWTO at
http://www.dwheeler.com/secure-programs which provides more information on writing secure programs.

Once you identify the problem and understand it, you can fix it. Occasionally you may want to re-do the
analysis, both because the line numbers will change and to make sure that the new code doesn’t introduce
yet a different vulnerability.

If you’ve determined that some line isn’t really a problem, and you’re sure of it, you can insert just before
or on the offending line a comment like

/* Flawfinder: ignore */
to keep them from showing up in the output.

Once you’ve done that, you should go back and search for the program’s inputs, to make sure that the pro-
gram strongly filters any of its untrusted inputs. Flawfinder can identify many program inputs by using the
−−inputs option, like this:

flawfinder −−inputs xyzzy

Flawfinder includes many other options, including ones to create HTML versions of the output (useful for
prettier displays). The next section describes those options in more detail.

OPTIONS
Flawfinder has a number of options, which can be grouped into options that control its own documentation,
select which hits to display, select the output format, and perform hitlist management.

Documentation
−−help Show usage (help) information.

−−version Shows (just) the version number and exits.

Flawfinder 17 May 2001 2

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

Selecting Hits to Display
−−allowlink Allow the use of symbolic links; normally symbolic links are skipped. Don’t use this option

if you’re analyzing code by others; attackers could do many things to cause problems for an
analysis with this option enabled. For example, an attacker could insert symbolic links to
files such as /etc/passwd (leaking information about the file) or create a circular loop, which
would cause flawfinder to run ‘‘forever’’. Another problem with enabling this option is that
if the same file is referenced multiple times using symbolic links, it will be analyzed multi-
ple times (and thus reported multiple times). Note that flawfinder already includes some
protection against symbolic links to special file types such as device file types (e.g.,
/dev/zero or C:\mystuff\com1). Note that for flawfinder version 1.01 and before, this was
the default.

−−inputs Show only functions that obtain data from outside the program; this also sets minlevel to 0.

−−minlevel=X

-m X Set minimum risk level to X for inclusion in hitlist. This can be from 0 (‘‘no risk’’) to 5
(‘‘maximum risk’’); the default is 1.

−−neverignore

-n Never ignore security issues, even if they hav e an ‘‘ignore’’ directive in a comment.

Selecting Output Format
−−columns Show the column number (as well as the file name and line number) of each hit; this is

shown after the line number by adding a colon and the column number in the line (the first
character in a line is column number 1).

−−context

-c Show context, i.e., the line having the "hit"/potential flaw. By default the line is shown
immediately after the warning.

−−dataonly Don’t display the header and footer. Use this along with −−quiet to see just the data itself.

−−html Format the output as HTML instead of as simple text.

−−immediate

-i Immediately display hits (don’t just wait until the end).

−−singleline

-S Display as single line of text output for each hit. Useful for interacting with compilation
tools.

−−omittime Omit timing information. This is useful for regression tests of flawfinder itself, so that the
output doesn’t vary depending on how long the analysis takes.

−−quiet Don’t display status information (i.e., which files are being examined) while the analysis is
going on.

Flawfinder 17 May 2001 3

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

Hitlist Management
−−savehitlist=F

Save all resulting hits (the "hitlist") to F.

−−loadhitlist=F
Load the hitlist from F instead of analyzing source programs.

−−diffhitlist=F
Show only hits (loaded or analyzed) not in F. F was presumably created previously using
−−savehitlist. If the −−loadhitlist option is not provided, this will show the hits in the ana-
lyzed source code files that were not previously stored in F. If used along with −−loadhitlist,
this will show the hits in the loaded hitlist not in F. The difference algorithm is conservative;
hits are only considered the ‘‘same’’ if they hav e the same filename, line number, column
position, function name, and risk level.

EXAMPLES
flawfinder /usr/src/linux-2.4.12

Examine all the C/C++ files in the directory /usr/src/linux-2.4.12 and all its subdirectories
(recursively), reporting on all hits found.

flawfinder −−minlevel=4 .
Examine all the C/C++ files in the current directory and its subdirectories (recursively); only
report vulnerabilities level 4 and up (the two highest risk levels).

flawfinder −−inputs mydir
Examine all the C/C++ files in mydir and its subdirectories (recursively), and report func-
tions that take inputs (so that you can ensure that they filter the inputs appropriately).

flawfinder −−neverignore mydir
Examine all the C/C++ files in the directory mydir and its subdirectories, including even the
hits marked for ignoring in the code comments.

flawfinder −−quiet −−dataonly mydir
Examine mydir and report only the actual results. This form is useful if the output will be
piped into other tools for further analysis.

flawfinder −−quiet −−html −−context mydir > results.html
Examine all the C/C++ files in the directory mydir and its subdirectories, and produce an
HTML formatted version of the results. Source code management systems (such as Source-
Forge and Savannah) might use a command like this.

flawfinder −−quiet −−savehitlist saved.hits *.[ch]
Examine all .c and .h files in the current directory. Don’t report on the status of processing,
and save the resulting hitlist (the set of all hits) in the file saved.hits.

flawfinder −−diffhitlist saved.hits *.[ch]
Examine all .c and .h files in the current directory, and show any hits that weren’t already in
the file saved.hits. This can be used to show only the ‘‘new’’ vulnerabilities in a modified
program, if saved.hits was created from the older version of the program being analyzed.

Flawfinder 17 May 2001 4

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

SECURITY
You should always analyze a copy of the source program being analyzed, not a directory that can be modi-
fied by a developer while flawfinder is performing the analysis. This is especially true if you don’t necess-
ily trust a developer of the program being analyzed. If an attacker has control over the files while you’re
analyzing them, the attacker could move files around or change their contents to prevent the exposure of a
security problem (or create the impression of a problem where there is none). If you’re worried about mali-
cious programmers you should do this anyway, because after analysis you’ll need to verify that the code
ev entually run is the code you analyzed. Also, do not use the −−allowlink option in such cases; attackers
could create malicious symbolic links to files outside of their source code area (such as /etc/passwd).

Source code management systems (like SourceForge and Savannah) definitely fall into this category; if
you’re maintaining one of those systems, first copy or extract the files into a separate directory (that can’t
be controlled by attackers) before running flawfinder or any other code analysis tool.

Note that flawfinder only opens regular files, directories, and (if requested) symbolic links; it will never
open other kinds of files, even if a symbolic link is made to them. This counters attackers who insert
unusual file types into the source code. However, this only works if the filesystem being analyzed can’t be
modified by an attacker during the analysis, as recommended above. This protection also doesn’t work on
Cygwin platforms, unfortunately.

Cygwin systems (Unix emulation on top of Windows) have an additional problem if flawfinder is used to
analyze programs the analyzer cannot trust due to a design flaw in Windows (that it inherits from MS-
DOS). On Windows and MS-DOS, certain filenames (e.g., ‘‘com1’’) are automatically treated by the oper-
ating system as the names of peripherals, and this is true even when a full pathname is given. Yes, Win-
dows and MS-DOS really are designed this badly. Flawfinder deals with this by checking what a filesystem
object is, and then only opening directories and regular files (and symlinks if enabled). Unfortunately, this
doesn’t work on Cygwin; on at least some versions of Cygwin on some versions of Windows, merely trying
to determine if a file is a device type can cause the program to hang. A workaround is to delete or rename
any filenames that are interpreted as device names before performing the analysis. These so-called
‘‘reserved names’’ are CON, PRN, AUX, CLOCK$, NUL, COM1-COM9, and LPT1-LPT9, optionally fol-
lowed by an extension (e.g., ‘‘com1.txt’’), in any directory, and in any case (Windows is case-insensitive).

BUGS
Flawfinder is currently limited to C/C++. It’s designed so that adding support for other languages should
be easy.

Flawfinder can be fooled by user-defined functions or method names that happen to be the same as those
defined as ‘‘hits’’ in its database, and will often trigger on definitions (as well as uses) of functions with the
same name. This is because flawfinder is based on text pattern matching, which is part of its fundamental
design and not easily changed. This isn’t as much of a problem for C code, but it can be more of a problem
for some C++ code which heavily uses classes and namespaces. On the positive side, flawfinder doesn’t get
confused by many complicated preprocessor sequences that other tools sometimes choke on.

Preprocessor commands embedded in the middle of a parameter list of a call can cause problems in parsing,
in particular, if a string is opened and then closed multiple times using an #ifdef .. #else construct,
flawfinder gets confused. Such constructs are bad style, and will confuse many other tools too. If you must
analyze such files, rewrite those lines. Thankfully, these are quite rare.

The routine to detect statically defined character arrays uses simple text matching; some complicated expre-
sions can cause it to trigger or not trigger unexpectedly.

Security vulnerabilities might not be identified as such by flawfinder, and conversely, some hits aren’t really
security vulnerabilities. This is true for all static security scanners, especially those like flawfinder that use
a pattern-based approach to identifying problems. Still, it can serve as a useful aid, and that’s the point.

Flawfinder 17 May 2001 5

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

SEE ALSO
See the flawfinder website at http://www.dwheeler.com/flawfinder. You should also see the Secure Pro-
gramming for Unix and Linux HOWTO at http://www.dwheeler.com/secure-programs.

AUTHOR
David A. Wheeler (dwheeler@dwheeler.com).

Flawfinder 17 May 2001 6

